
ANTIDOSTE: detection and mitigation of
network-based Denial-of-Service attacks

for a location certification system
Pedro André Ferreira Teixeira

Abstract—Denial-of-Service (DoS) attacks have a long history
and there are many of them, ranging from exploits that crash
individual devices to attacks that overwhelm the capacity of
servers by having many clients issue a barrage of requests. These
attacks target availability and deny access of rightful users to the
on-line services they need to work and play.

In this work we protect a location certification system from
network-level distributed-denial-of-service attacks. We called our
solution ANTIDOSTE – antidote for DoS – and it combines the
efficiency of using custom rules to detect specific attacks with
the effectiveness of using Machine Learning on traffic patterns
to detect previously unknown attacks. We evaluated the solution
on a test-bed representing all the network nodes of the system,
spread across a city. The results show that ANTIDOSTE can detect
DoS attacks, both known and unknown, and can mitigate them
using virtual local area networks (VLAN), created dynamically
using software-defined network (SDN) mechanisms.

Index Terms—Network Security, Distributed Denial-of-Service,
Software-Defined Networking, Deep Learning, Logistic Regres-
sion, Location Certification System

I. INTRODUCTION

Denial-of-Service (DoS) attacks can make the network
resources unavailable for their intended users, temporarily
or indefinitely [4]. An important sub-type of DoS attack is
the Distributed Denial-of-Service (DDoS), a coordinated DoS
attack that is generated by using many compromised network
hosts simultaneously [16].

To fight DoS attacks, first it is necessary to detect them and
distinguish them from benevolent spikes due to a popularity
surge or a seasonal effect on traffic. Second, it is necessary to
mitigate the effects of the attack.

Known DoS attacks can be detected with pre-defined rules
that are able to detect the pattern of the attacks. However, rules
are not effective for unknown attacks. Machine Learning (ML)
has been used to tackle this challenge [21]. ML models can
be trained to recognize malicious/abnormal packets, likely to
be part of a DoS attack.

Regarding DoS attack mitigation, one possible way to
improve it is to use Software Defined Networking [11] (SDN)
architecture, with separate data and control planes. When the
monitoring and analysis detect attacks, the SDN controllers
can trigger a response system. The SDN controller can define
“drop” rules in the SDN switch so that the packets from the
malicious host do not arrive to its target.

In this paper we propose a prototype solution for DoS
detection and mitigation, ANTIDOSTE, i.e. antidote for DoS.

We created it with the intention of protecting a specific
application, CROSS [15], from DoS attacks. CROSS is a dis-
tributed location certification system where users are rewarded
if they complete itineraries across the city using the mobile
application developed for the Android operating system [17].
The CROSS application uses several techniques to verify the
user presence at the locations and prevent location spoofing at-
tacks; however, before this work, it lacked protections against
DoS attacks, and if the system was made unavailable, users
would not be able to collect their rewards and would become
unsatisfied tourists. Therefore, ANTIDOSTE aims to provide a
detection and mitigation mechanism for attacks on availability.
It uses SDN and ML technologies in conjunction so that they
can reinforce each other. The key contributions paper are:

• DoS attack detection and mitigation for the CROSS
location certification system;

• Test-bed for DoS attacks on CROSS.
In terms of security properties [2], the objective of this work

is to preserve availability; the focus is not on integrity and
confidentiality, as the protection of these other properties are
addressed in previous work [15]. Also, in this work we only
focus on flooding attacks [6] that affect the data plane of the
SDN architecture.

ANTIDOSTE was developed for and tested with the CROSS
application, but its design is generic, and the solution can be
adapted for other domains of applications.

The remainder of the paper is structured as follows: Sec-
tion II start by presenting our network management, followed
by work on DoS detection, ending with previously proposed
ways to mitigate these attacks; Section III presents our pro-
posed solution against DoS attacks; Section IV describes the
test-bed and Section V presents the experiments we conducted
and their results. Finally, Section VI states our conclusions.

II. BACKGROUND AND RELATED WORK

In this Section we start by presenting the target system to be
protected by ANTIDOSTE. Next, we present the core network
management mechanisms required for our solution and also
give an overview of previous works on DoS attack detection
and mitigation.

A. Target system

CROSS [15] is a location certification system for Smart
Tourism [7]. In Smart Tourism clients use their personal de-



vices to interact with existing or newly added infrastructure in
emblematic city locations and record sensor data that can later
be used to verify location claims. Therefore, in CROSS, the
system operation starts when the tourist installs the smartphone
application and signs up for an account. Before starting the
trip, the application downloads the catalog of locations. During
its use, the application logs visits to locations. The location
sensing relies on Wi-Fi and leverages the regular scans already
performed by the mobile operating system. At the end of the
trip, the logging stops, the application submits the collected
information to the server, and rewards will be issued, if the
conditions have been satisfied.

The authors of CROSS use 3 strategies for the loca-
tion proofs: Wi-Fi scavenging, Wi-Fi beacons and interactive
kiosks. These strategies provide increasing security against
spoofing and Sybil attacks [5]. However, they do not protect
from DoS attacks.

B. Network infrastructure management

Software-defined anything (SDx) is recent technology trend
that proposes that everything should be programmable, i.e.,
software should be “in command” of the hardware infrastruc-
ture. SDx includes Software-defined networking (SDN) [11],
which is the most recognized technology in this trend. Its core
feature is the separation of the control plane and data plane in
the network. SDN allows the flexible control of network traffic.
The devices in SDN are programmable, and thus the networks
themselves are more dynamic, manageable, and cost-effective.

In SDN, network intelligence is logically centralized in
software-based controllers (the control plane), and network
devices such as OpenFlow Switches become simple packet
forwarding devices (the data plane) that can be programmed
via an open interface, the OpenFlow protocol [19]. Such SDN
works as follows: an OpenFlow switch has one or more flow
tables. These tables are used to control packets (e.g., “forward”
or “drop”) according to packet-handling rules, called the flow
rules, and received from a centralized controller. Therefore,
according to the controller policy that manages flow tables,
the OpenFlow switch can act as a router, switch, or firewall, or
exhibit similar functions that depended on the packet-handling
rules. For example a VLAN1 can be created through the SDN
controller and the flow rules can be programmed, for that
VLAN, in the SDN switch.

And so, with this idea of a centralized network control plane
and the introduction of this new type of programmability to the
network devices, which can streamline network management
and enable run-time security strategies. SDN can rapidly react
to network anomalies and malicious traffic, such as DoS
attacks, by filtering out sources of attack and isolating parts
of the network, if necessary.

C. Denial-of-Service detection

SDN provides various techniques for DoS attack detec-
tion [23]. For example, to perform DoS attack detection, Yin et

1A VLAN is a Virtual Local Area Network. It is a broadcast domain that
is partitioned and isolated at the data link layer.

al. [25] have proposed an algorithm that calculates the cosine
similarity of the vectors of packets. It checks the incoming
packets (packet_in) in each port of the boundary switches
and then determines whether a DoS attack has occurred based
on the value of the cosine similarity.

SDN and ML can be combined to deal with DoS at-
tacks [20], [18]. In particular, Ravi et al. [21] have demon-
strated the effectiveness of using SDN in conjunction with ML
by crafting a learning-driven detection mitigation mechanism
(LEDEM). The authors used a semi-supervised [21] ML
model, the semi-supervised deep extreme learning machine
(SDELM) model, which is a mixture of unsupervised, where
unlabeled data is used, and supervised, where labeled data is
used to train the detection of DoS traffic.

D. Denial-of-Service mitigation

The strategy to mitigate these attacks, in a SDN environ-
ment, is to set “drop” rules for the malicious packets as done
in the work of Yin et al. [25]. When an attack is detected,
a new “drop” rule is added to the flow table to drop all the
packets originating from the malicious devices. But we need to
consider that if an attacker has a large botnet [1], composed of
many devices, setting individual rules for the malicious devices
will saturate the limited flow table space in switch and lead to
overflowing issues in the data plane of the SDN [22]. So, Ravi
et al. [21] have proposed a mitigation strategy that prevents
saturation; they create a VLAN in the switch, and then define
“drop” rules for it and group all the malicious hosts in that
VLAN. This is one of the strategies used in our proposed
approach, and will be further explained in the next Section.

III. ANTIDOSTE

ANTIDOSTE is a prototype solution that was created with
the intention of protecting CROSS system from DoS attacks.
The strategy of the solution depends, mainly, on the use
of SDN to provide deep packet inspection on the network
controllers, so that necessary features from the packet are ex-
tracted to differentiate malicious from normal network traffic.
In previous work, by Yin et al. [25], although the results of the
proposed method were good, compared to previous methods,
there is a weak point in the solution: the authors made the
assumption that the generated packets to perform DoS attacks
are always similar, which we cannot assume in a real-world
scenario. The same thing happens to ML approaches since they
are based on prediction, i.e. what the model decides the traffic
is might not correspond to the reality; it is possible for the
approach to not detect an attack or not detect it in reasonable
time. Therefore, in ANTIDOSTE we propose a hybrid solution
that combines SDN and ML techniques to provide better DoS
detection and mitigation. This way, it is possible to use the
strong points of some of the detection techniques to make up
the weak points of the other techniques.

A. Detection strategy

ANTIDOSTE has three approaches that work together to
detect DoS attacks, that are explained next.



1) Threshold-based detection: The first strategy sets a
Threshold for traffic volume. This approach limits the number
of packets a client device can send over the network. For
example, the TCP-SYN flood attack that uses the 3-way
handshake to flood the server with TCP-SYN packets. In a
normal scenario, a client is expected to send an TCP-ACK
packet after sending TCP-SYN packet, if there is no problem
in the network. We can set a maximum threshold for the
number of TCP-SYN packets send by the client without TCP-
ACK packets. First, we set a predefined threshold N and then
when an TCP packet is received on the controller we check
if the packet contains an SYN or ACK flag. If the packet has
a SYN flag, then the counter of that client is increased and
if the packet has an ACK flag, the counter of that client is
decreased by one. The reason why the counter is decreased
by one and not reset to zero is because of the attacker might
know of this mechanism beforehand and when the counter
is approaching the predefined threshold he could just send
TCP-ACK packet, resetting the counter, and continuing with
the attack, making it possible for the attacker to counter this
strategy. When the counter reaches the maximum threshold,
the mitigation strategy is applied. Figure 1 shows the flow
diagram of this approach.

Fig. 1. Flowchart for Threshold-based attack detection.

However, despite being the fastest approach to detect an
attack, as Section V-B will demonstrate, this technique requires
a considerable knowledge of the attack, since we need to
know a weak point that we can exploit to prevent the attack.
Therefore, this approach is suitable for simpler attacks that
are easier to find their weaknesses, such as the previously
mentioned TCP-SYN flood attacks. The implementation of
this approach, applied to TCP-SYN flood attacks, is shown
in Algorithm 1.

2) Machine Learning-based detection: The second detec-
tion approach is based on ML techniques. In our solution we
use two different models, Deep Learning (DL) and Logistic
Regression (LR).

DL [12] has been previously applied to traffic classifica-
tion [24]. In this work we use a DL model that was initially
proposed by Yuan et al. [26] to detect DoS attacks. When
training this model, we specialize it to detect certain attacks,
i.e., we provide data for a certain type of attack so that it
has high accuracy when detecting that attack. In this case, we
chose the ICMP flood attack.

The DL approach is easier to train, in comparison with
the Threshold-based approach, since we only need a dataset
of the attack for training, while the previously presented

Algorithm 1: Threshold mitigation approach.
Result: Increase/Decrease counter from host or

mitigate attack
Threshold← N ;
tracker ← {};
if PacketIn.type != TCP then

return
end
if PacketIn.flags != SYN or ACK then

return
end
if PacketIn.flags == SYN then

if PacketIn.scr not in tracker then
tracker[PacketIn.scr] = 1 #src means packet
source IP

else
tracker[PacketIn.scr] += 1
if tracker[PacketIn.scr] == Threshold then

Apply mitigation strategy
end

end
end
if PacketIn.flags == ACK then

if PacketIn.scr not in tracker then
tracker[PacketIn.scr] -= 1

end
end

approach requires manual intervention to create or improve
rules. However, the DL approach is the slowest, as Section V-B
will demonstrate, and is more suited to detect more elaborated
attacks that require a more complex analysis.

The logistic regression (LR) [9] model is trained to rec-
ognize normal behaviour of the traffic. In this case we use
less entries from each attack, when comparing to the DL
model, because we want the LR model to have a general
knowledge about what is not normal traffic, in contrast to the
DL model where we want the model to know the attack. Once
the LR model detects unexpected behaviour, the mitigation
strategy is applied. However there is also another purpose for
this approach, which is to improve the previously mentioned
detection approaches, i.e., Threshold and DL. When the LR
model detects abnormality and the other two approaches do
not, a log/dataset is generated from the packets originated by
the attack to make the attack features known to the other two
approaches. Once the log is generated, it is analysed by a
network administrator to verify if it is really an attack, since
it might be a peak in traffic that LR model does not recognize
as normal traffic. If the traffic corresponds to an attack, we first
apply the log/dataset to train the DL model, which is faster to
prepare for attack detection, and so we have a more reliable
way to detect an attack, than the LR model. Meanwhile, we
keep studying the log to create new rules for the Thresholds,
so we can detect the attacks faster than the DL approach.

Therefore, for the DL and LR approaches, represented in



Fig. 2. Flowchart for the DL and LR attack detection.

Figure 2, the features are saved in a dictionary where the index
is the source MAC, and the value is a list of packet features.
Once the controller has received a pre-determined number of
packets from that host, represented as N in the figure, these
values from the dictionary are then saved in a file so the model
can determine if an attack is happening. After the model has
stated its prediction, the application running the model creates
a new file and sends it to the controller.

And so, ANTIDOSTE takes the advantage of the three detec-
tion approaches and creates a hybrid detection to analyse the
traffic simultaneously so that the detected attacks get mitigated
as soon as they discovered by each approach. In summary:
Threshold applies rules for specific attacks, DL recognizes
attacks, and LR recognizes deviations from normality.

B. Mitigation strategy

The ANTIDOSTE mitigation strategy is based on the strategy
proposed by Ravi et al. [21], and is used for the Threshold and
DL approaches. The controller starts by creating a VLAN, if
it does not exist on the SDN switch in the same sub-network
as the malicious host. Then the source and destination MAC
addresses are added to that VLAN with “no flow” rules, so
that the packets get dropped. There is only one VLAN per
sub-network which is responsible for every malicious device
in that sub-network, making only one entry in the switch flow
table needed to drop all the packets from all the malicious
devices in one sub-network. This is done to avoid overloading
the flow tables of the switches, as mentioned in Section II-D.
In Figure 3 it is represented the mitigation strategy after the
increase of the counter for the Threshold approach and for the
DL approach after the prediction analysis.

The LR detection approach also uses the previously men-
tioned mitigation strategy. However, first it needs to apply
a new strategy to minimize the possibilities of what was
detected was not an attack. It might be just a high peak in
traffic, as mentioned previously, or bad prediction from the
LR model. Therefore, this new strategy consists in setting
a certain number of times a host can have an unexpected

Fig. 3. Mitigation strategy for Threshold and DL approaches.

behaviour (e.g. three) and so once the LR model detects an
abnormal behaviour from that host, it is recorded that the host
has committed one fault. Whenever the host has committed
three faults (the specific total of faults can be adjusted), the
mitigation strategy is applied and the packets from that host
are recorded into the log/dataset and dropped. However, it
is possible that the unusual traffic is coming from a non-
malicious host that just had, for example, a high peak in
traffic for a longer period of time. In those cases, a network
administrator is responsible for analysing the log/dataset, to
remove the host from the VLAN and re-establish the flow
rules to what they were before the mitigation. There is also
the possibility that the host, after committing one or two faults,
starts to behave normally. In these cases the number of faults
can be decreased after a timeout or if the model detects that
the host has behaved normally a number of times in a row.
For example, the host has two faults, but the model detects
that he had a normal behaviour two times in a row and so the
number of faults is decremented by one. If this happens again
then the host will not have more faults.

Also for the LR model, since the DL model is the slowest
at detecting an attack, as Section V-B will show, we created
a LR model which is faster than the DL model, and thus,
in case of an attack, the model needs to detect the attack a
predetermined number of times (three in our example), making
the detection time become more relevant than the accuracy,
being this the reason why we use LR model instead of DL
model. Figure 4 represents the mitigation strategy for the LR
approach, after the prediction analysis, where N is the number
of faults a device can do and M is the number of consequent
well behavior detected, from a device, before reducing the
number of faults.

IV. TEST-BED

In this Section we describe the test-bed, based of the
network supporting CROSS, that we used to conduct our
evaluation of ANTIDOSTE, starting by first describing the tool
we use to emulate CROSS then we mention the hardware
components and software components we emulate in our test-
bed, ending with a brief overview of the network topology.



Fig. 4. Mitigation strategy for LR approach.

A. Network Emulator

Mininet [10] is an OpenFlow-based SDN emulator giving
researchers an efficient way to test their SDN frameworks
and measure their performance and reliability. The Mininet is
an open source emulator written in the Python programming
language. It is built over the Ubuntu Linux distribution. The el-
ements of Mininet are organized into three main components:
the host, which sends and receives the packets, the switch,
which stores all the required rules to forward the packets
to their destinations, and a central controller which handles
the functionality of control and management operations in the
network. Mininet supports different types of virtualized hosts,
switches and controllers.

B. Software and Hardware

On the top of the hardware infrastructure we have a
POX controller [8] which is Python-based open-source Open-
Flow/SDN. POX is used for faster development and prototyp-
ing of new network applications. The controller comes pre-
installed with the Mininet virtual machine. By using them you
can turn OpenFlow devices into hub, switch, load balancer,
firewall devices. The POX controller allows easy way to run
OpenFlow/SDN experiments. POX can be passed different
parameters according to real or experimental topologies, thus
allowing experiments to be run on real hardware, test-beds
or in the Mininet emulator. To generate the traffic from each
host we use a Python library, called Scapy. It is a powerful
interactive packet manipulation program that can forge or
decode packets of a wide number of protocols, send them on
the wire, capture them, match requests and replies.

This test-bed consists mainly of a server, 10 devices that
can be Kiosks, Smart Space Managers (SSM) or Wi-Fi Ac-
cess Point (AP), 6 OpenFlow-enabled switches and a SDN

controllers. The emulation was done in a machine with a Intel
Core i7-8750H CPU at 2.20GHz and 16GB of RAM.

C. Network topology

As we can see in Figure 5 there are 6 sub-networks, across
the city of Lisbon, Portugal. In the emulated framework, 5
of them are tourism points with 2 devices, per sub-network,
for proof location, and the last one is for the CROSS server.
Each sub-network has a switch which is connected to every
device in the sub-network, working as a router for that sub-
network. Note that in Figure 5 there is a controller per sub-
network, but they are the same controller. This controller is
responsible for setting rules in the switch for forwarding or
dropping packets. Also, in Figure 5 it is internet with lower-
case “i” since CROSS is a private network.

D. Attack scenarios

Some possible attack scenario in our test-bed are: An
attacker uses a tourism based device, i.e. the Kiosk, Smart
Space Manager or Wi-Fi Access Point, present in one sub-
network to perform a DoS aimed at the application server;
Perform a DoS from one tourism based device to another in
the same sub-network, for example in Figure 5 in Jerónimos
one Kiosk could attack a Wi-Fi Access Point, or in different
sub-networks, for example a Kiosk in Sé could attack a Kiosk
in Jerónimos; All the tourism based device in a sub-network
can be used to perform a DDoS attack to the application server
or a tourism based device present in other sub-network; And it
is possible to use all the tourism based devices present in the
test bed to perform a DDoS attack to the application server.

V. EVALUATION

To evaluate our solution, we used the test-bed. The CROSS
server was the target of the DoS attack and it is located in the
Alvalade sub-network, as represented in Figure 5. The types
of DoS tested in our experiments were the TCP-SYN flood
and ICMP flood, which are known by the Thresholds or the
DL approaches, and the UDP flood which is considered an un-
known attack. The remainder of this Section will disclose the
approaches we followed for the evaluation of each detection
strategy, as well as the reason why we chose those approaches.

A. Approach

For the Thresholds detection strategy we evaluate the time
it takes to detect a DoS attack. This metric is important to
evaluate how well the detection strategy behaves when an
attack is happening. For the DL and LR approaches we also
evaluate the time it takes to detect DoS attack, for the same
reason of the Thresholds approach, and we evaluate metrics
such as: Accuracy of the model, to see how well the solution
predicts the status of the network (benign or under attack)
correctly; True Positive rate/Recall, to verify how well the
solution can detect when an attack is occurring; False Positive
rate, to check how well the solution can see that an attack
is not happening; Precision, to examine at what precision
(i.e., DoS is not marked as benign) the model predicts benign



Fig. 5. CROSS network topology.

activity in the network; F-score, to help us find out the
optimum threshold between Recall and Precision in the model,
and so that the model can be compared with other classifiers in
future work. These metrics were evaluated for the DL and LR
approaches, since these approaches are based on predictions
and not on rules, as with the Thresholds.

The deployment of the models was done in an application
running alongside the controller. The controller is responsible
for extracting the features from the received packets and then
sending these features to the application where the model
is running. The extracted features can be seen in Table I,
alongside some examples and their types. Both models analyse
a window of traffic (multiple packets at the same time) instead
of analysing a single packet, making values such as the time
between packets more meaningful, which is an important
feature to detect the flooding attacks. For the DL model, these
metrics were evaluated, with a dataset generated from normal
traffic of the test-bed and a dataset, BUET-DDoS2020 [14],
for a specific type of DoS attack, namely ICMP flood attack,
both with 10 000 entries. For the LR model we used a dataset
generated from normal traffic of the test-bed, 50 000 entries,
and all the attacks present in the test dataset from BUET-
DDoS2020, TCP-SYN flood, UDP flood, HTTP flood, DNS
flood and ICMP flood, being approximately 10 000 entries
tested for each attack.

B. Results

For measuring the time each approach takes to detect and
mitigate the attack and the bandwidth impact from the normal,
attack and mitigated traffic, we simulated a DoS attack aimed
at the server, while normal traffic is circulating. We captured
the traffic in the Alvalade sub-network of CROSS between

TABLE I
FEATURES EXTRACTED.

Field Field Example Field Type
frame number 1 Numerical
frame.len 805 Numerical
ip.protocol tcp Text
ip.ttl 127 Numerical
tcp.srcport 2090 Numerical
tcp.dstport 443 Numerical
tcp.syn 1 Numerical
tcp.ack 0 Numerical
tcp.rst 0 Numerical
time 0 Numerical
http.version 1.1 Float
http.type GET Text
http.request synchronize with server Text

the server and the SDN switch. Figure 6a shows what are the
normal values for the bandwidth, from the test-bed.

1) TCP-SYN flood: The TCP-SYN flood attack will be
detected by the Thresholds approach. The time of detection
depends on the packet rate of the attack and the predefined
Threshold. This is because the detection happens when the
attacker sends pre-defined number of packets, in our experi-
ments it is the number of TCP-SYN packets. And so, if the
packet rate is low, the detection will take more time, also,
the higher the threshold the more time it takes to mitigate.
But of course, if the packet rate is low the impact on the
victim server will be less than if the packet rate was higher,
and so the attacker has little interest in low packet rates, for
flooding attacks. In addition, we cannot set the threshold too
low because this might cause that legitimate user will not
be able to communicate with the server when the network
is saturated with other requests from legitimate clients. As



TABLE II
MACHINE LEARNING MODELS EVALUATION METRICS.

Model Accuracy True Positive Rate False Positive Rate Precision F1-score
DL 99.97% 99.95% 100% 100% 99.97%
LR 74.97% 59.90% 89,27% 38,90% 47.17%

mentioned before, the attack we use for this experiment is the
TCP-SYN flood attack and it was performed with a Python
library named Scapy [3]. In Figure 6b, we start the TCP-
SYN flood attack at 5 seconds, which is represented in the
graph by the spike. However, since we do the attack with high
packet rate, and the Threshold is 20, it is mitigated almost
instantly (after the first 20 TCP-SYN packets have passed
through the controller, the mitigation strategy is applied), and
so the attack does not have an impact like what will occur
in the other approaches. Note that we set the Threshold to
20 as an example of what a real-world scenario could be.
There was no investigation to determine what is the optimal
Threshold since the emulation of the network is done in the
same machine, without packet loss. In this case, the optimal
Threshold for this network was 2, which does not make sense
in a real network.

2) ICMP flood: The DoS attack detected by the DL ap-
proach was an ICMP flood, also performed by using Scapy.
The effect on our solution can be seen in Figure 6c. We started
the attack around the 5 second mark and it is mitigated at
10 seconds (black arrow), making our solution able to detect
and mitigate the attack in approximately 5 seconds.

3) UDP flood: The LR approach was used to detect UDP
flood attack, which was simulated with the hping3 tool [13].
As stated in Section III-B, we need to predefined a value,
for the mitigation strategy, that is the number of times an
abnormality needs to be detected so the traffic is mitigated,
and so we predefined that value to be 3. As you can see from
Figure 6d, the attack started at 1 seconds and is mitigated at
2 seconds, taking about 1 second for the LR model to detect
and mitigate the attack (black arrow), being faster than the DL
model despite having to pass through 3 verifications.

C. Discussion

By analyzing the results, we can conclude that the detection
strategy based on SDN rules (Thresholds) is the fastest at
detecting DoS attacks, but to use this approach we need to
have considerable knowledge of the attack behaviour so we
can know, if possible, which features, of the attack, we can
explore to stop it. The DL approach is the slowest but is
the easiest to implement since we only need data from the
attack to train the model, not requiring much knowledge, as the
Thresholds strategy needs about the attack to detect it, being
suitable for cases where the mentioned attack “weakness” does
not exist. Also, in Table II we can see the performance results
of the DL and LR models. As expected, the DL model is much
better than the LR model, not only because of the DL models
have better accuracy than LR models, but also because the
DL model that we evaluated, is specialized to detect specific

attack, in this experiment ICMP flood attack, while the LR
model was trained to detect abnormal behavior which requires
much more data and knowledge of the network where the
model is deployed. This is the reason why we apply a different
mitigation strategy for the LR approach. In addition, these
results also demonstrate why we cannot deploy the behavior
analysis strategy by itself, since most of the attacks could pass
without being detected, and so, this strategy serves more of a
support to the other two, by providing the data gathered from
the attack to improve them. However, it is a great addition to
the other two strategies since it can help with the development
of the prototype solution, by improving the other two solutions
with logs/datasets created from abnormal traffic.

VI. CONCLUSION

We developed ANTIDOSTE to protect a specific location
certification system from Denial-of-Service (DoS) attacks.
ANTIDOSTE uses Software Defined Networking (SDN) tech-
niques in conjunction with Machine Learning (ML) techniques
to detect DoS attacks, making it a hybrid solution that com-
bines benefits of different technologies. By using more than
one approach to detect attacks it is possible to cover the
weaknesses of some detection strategies. ANTIDOSTE has a
semi-automatic improvement thanks to the Logistic Regression
(LR) model detection approach that is responsible for gen-
erating logs/datasets from the detected unexpected behaviour
of the attacks. These logs/datasets are analysed by a network
manager to verify if they represent an attack, and if so, they
can be used to improve the detection, with a manual rule for
the Thresholds approach or with automatic training using DL.

In this work we demonstrated the capabilities of our pro-
totype solution for a specific use case, therefore, we plan to
test our solution in different systems to prove it is a general
solution, as we designed it to be. Moreover, we want to
improve the LR mitigation strategy. The original idea was to
limit the traffic bandwidth to a predefined value that would
represents the maximum bandwidth a host should have during
a normal behaviour and prioritise the traffic from other hosts
in the same sub-network. However, this was not possible
due to the limitation of the OpenFlow protocol version that
POX controller supports, 1.0, in which is not possible to set,
dynamically, a limit to the bandwidth in the SDN switches.
In contrast, version 1.2 of OpenFlow protocol allows for
maximum rate setting, and this will be used in future versions.
Also, we aim to improve our solution to detect more and
different types of DoS/DDoS attacks and improve the used
ML models so attacks can be detected better and faster.



(a) Normal bandwidth.

(b) TCP-SYN flood with Threshold detection.

(c) ICMP flood with DL model detection.

(d) UDP flood with LR model detection.

Fig. 6. Network traffic volume for different configurations of ANTIDOSTE.

ACKNOWLEDGEMENTS

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with refer-
ence UIDB/50021/2020 (INESC-ID) and through project with
reference PTDC/CCI-COM/31440/2017 (SureThing).

REFERENCES

[1] Angrishi, K.: Turning internet of things (iot) into internet of vulnerabil-
ities (iov): Iot botnets. arXiv preprint arXiv:1702.03681 (2017)

[2] Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing 1(1), 11–33 (Jan 2004)

[3] Biondi, P., community., T.S.: (2021), https://scapy.net/
[4] Chen, W., Ding, D., Dong, H., Wei, G.: Distributed resilient filtering for

power systems subject to denial-of-service attacks. IEEE Transactions
on Systems, Man, and Cybernetics: Systems 49(8), 1688–1697 (2019)

[5] Douceur, J.R.: The sybil attack. In: International workshop on peer-to-
peer systems. pp. 251–260. Springer (2002)

[6] E Chou, R.G.: Distributed Denial of Service (DDoS). O’Reilly (2018)
[7] Gretzel, U., Sigala, M., Xiang, Z., Koo, C.: Smart tourism: foundations

and developments. Electronic markets 25(3), 179–188 (2015)
[8] Kaur, S., Singh, J., Ghumman, N.S.: Network programmability using

pox controller. In: ICCCS International Conference on Communication,
Computing & Systems, IEEE. vol. 138, p. 70. sn (2014)

[9] Kleinbaum, D.G., Dietz, K., Gail, M., Klein, M., Klein, M.: Logistic
regression. Springer (2002)

[10] Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid
prototyping for software-defined networks. In: Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. pp. 1–6 (2010)

[11] Larry L. Peterson, C.C., Brian O’Connor, T.V., Davie, B.: Software-
Defined Networks: A Systems Approach. Systems Approach LLC
(2020)

[12] LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553),
436–444 (2015)

[13] Limited, O.S.: hping3 (2021), https://tools.kali.org/
information-gathering/hping3

[14] M. Hasan, S.I.: Buet-ddos2020 (2020), https://data.mendeley.com/
datasets/bzgf9r36kp/2

[15] Maia, G.A., Claro, R.L., Pardal, M.L.: Cross city: Wi-fi location proofs
for smart tourism. In: International Conference on Ad-Hoc Networks
and Wireless. pp. 241–253. Springer (2020)

[16] Matta, V., Di Mauro, M., Longo, M.: DDoS attacks with randomized
traffic innovation: Botnet identification challenges and strategies. IEEE
Transactions on Information Forensics and Security 12(8), 1844–1859
(2017)

[17] Mednieks, Z.R., Dornin, L., Meike, G.B., Nakamura, M.: Programming
android. ” O’Reilly Media, Inc.” (2012)

[18] Niyaz, Q., Sun, W., Javaid, A.Y.: A deep learning based ddos de-
tection system in software-defined networking (sdn). arXiv preprint
arXiv:1611.07400 (2016)

[19] Nunes, B.A.A., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti,
T.: A survey of software-defined networking: Past, present, and future
of programmable networks. IEEE Communications surveys & tutorials
16(3), 1617–1634 (2014)

[20] Polat, H., Polat, O., Cetin, A.: Detecting ddos attacks in software-defined
networks through feature selection methods and machine learning mod-
els. Sustainability 12(3), 1035 (2020)

[21] Ravi, N., Shalinie, S.M.: Learning-driven detection and mitigation of
DDoS attack in iot via sdn-cloud architecture. IEEE Internet of Things
Journal 7(4), 3559–3570 (2020)

[22] Shin, S., Gu, G.: Attacking software-defined networks: A first feasibility
study. In: Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking. pp. 165–166 (2013)

[23] Wang, J., Wen, R., Li, J., Yan, F., Zhao, B., Yu, F.: Detecting and
mitigating target link-flooding attacks using sdn. IEEE Transactions on
Dependable and Secure Computing 16(6), 944–956 (2018)

[24] Wang, Z.: The applications of deep learning on traffic identification.
BlackHat USA 24(11), 1–10 (2015)

[25] Yin, D., Zhang, L., Yang, K.: A DDoS attack detection and mitigation
with software-defined internet of things framework. IEEE Access 6,
24694–24705 (2018)

[26] Yuan, X., Li, C., Li, X.: Deepdefense: identifying DDoS attack via deep
learning. In: 2017 IEEE International Conference on Smart Computing
(SMARTCOMP). pp. 1–8. IEEE (2017)

https://scapy.net/
https://tools.kali.org/information-gathering/hping3
https://tools.kali.org/information-gathering/hping3
https://data.mendeley.com/datasets/bzgf9r36kp/2
https://data.mendeley.com/datasets/bzgf9r36kp/2

	Introduction
	Background and Related work
	Target system
	Network infrastructure management
	Denial-of-Service detection
	Denial-of-Service mitigation

	antiDoSte
	Detection strategy
	Threshold-based detection
	Machine Learning-based detection

	Mitigation strategy

	Test-bed
	Network Emulator
	Software and Hardware
	Network topology
	Attack scenarios

	Evaluation
	Approach
	Results
	TCP-SYN flood
	ICMP flood
	UDP flood

	Discussion

	Conclusion
	References

